↳ ITRS
↳ ITRStoIDPProof
z
Cond_f1(TRUE, x, z, u, w) → z
f(x, z, u, w) → Cond_f1(>@z(w, x), x, z, u, w)
f(x, z, u, w) → Cond_f(&&(>=@z(x, w), >=@z(u, 0@z)), x, z, u, w)
sqrt(x) → f(x, 0@z, 1@z, 1@z)
Cond_f(TRUE, x, z, u, w) → f(x, +@z(z, 1@z), +@z(u, 2@z), +@z(+@z(w, u), 2@z))
Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_f1(TRUE, x, z, u, w) → z
f(x, z, u, w) → Cond_f1(>@z(w, x), x, z, u, w)
f(x, z, u, w) → Cond_f(&&(>=@z(x, w), >=@z(u, 0@z)), x, z, u, w)
sqrt(x) → f(x, 0@z, 1@z, 1@z)
Cond_f(TRUE, x, z, u, w) → f(x, +@z(z, 1@z), +@z(u, 2@z), +@z(+@z(w, u), 2@z))
(1) -> (2), if ((u[1] →* u[2])∧(w[1] →* w[2])∧(x[1] →* x[2])∧(z[1] →* z[2])∧(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)) →* TRUE))
(2) -> (0), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[0])∧(+@z(z[2], 1@z) →* z[0])∧(+@z(u[2], 2@z) →* u[0])∧(x[2] →* x[0]))
(2) -> (1), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[1])∧(+@z(z[2], 1@z) →* z[1])∧(+@z(u[2], 2@z) →* u[1])∧(x[2] →* x[1]))
(3) -> (0), if ((x[3] →* x[0]))
(3) -> (1), if ((x[3] →* x[1]))
Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
(1) -> (2), if ((u[1] →* u[2])∧(w[1] →* w[2])∧(x[1] →* x[2])∧(z[1] →* z[2])∧(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)) →* TRUE))
(2) -> (0), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[0])∧(+@z(z[2], 1@z) →* z[0])∧(+@z(u[2], 2@z) →* u[0])∧(x[2] →* x[0]))
(2) -> (1), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[1])∧(+@z(z[2], 1@z) →* z[1])∧(+@z(u[2], 2@z) →* u[1])∧(x[2] →* x[1]))
(3) -> (0), if ((x[3] →* x[0]))
(3) -> (1), if ((x[3] →* x[1]))
Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(1) -> (2), if ((u[1] →* u[2])∧(w[1] →* w[2])∧(x[1] →* x[2])∧(z[1] →* z[2])∧(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)) →* TRUE))
(2) -> (1), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[1])∧(+@z(z[2], 1@z) →* z[1])∧(+@z(u[2], 2@z) →* u[1])∧(x[2] →* x[1]))
Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)
(1) (x[1]=x[2]∧z[1]=z[2]∧+@z(z[2], 1@z)=z[1]1∧&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z))=TRUE∧w[1]=w[2]∧+@z(+@z(w[2], u[2]), 2@z)=w[1]1∧x[2]=x[1]1∧u[1]=u[2]∧+@z(u[2], 2@z)=u[1]1 ⇒ COND_F(TRUE, x[2], z[2], u[2], w[2])≥NonInfC∧COND_F(TRUE, x[2], z[2], u[2], w[2])≥F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))∧(UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥))
(2) (>=@z(x[1], w[1])=TRUE∧>=@z(u[1], 0@z)=TRUE ⇒ COND_F(TRUE, x[1], z[1], u[1], w[1])≥NonInfC∧COND_F(TRUE, x[1], z[1], u[1], w[1])≥F(x[1], +@z(z[1], 1@z), +@z(u[1], 2@z), +@z(+@z(w[1], u[1]), 2@z))∧(UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥))
(3) (x[1] + (-1)w[1] ≥ 0∧u[1] ≥ 0 ⇒ (UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥)∧-1 + (-1)Bound + (-1)w[1] + x[1] ≥ 0∧1 + u[1] ≥ 0)
(4) (x[1] + (-1)w[1] ≥ 0∧u[1] ≥ 0 ⇒ (UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥)∧-1 + (-1)Bound + (-1)w[1] + x[1] ≥ 0∧1 + u[1] ≥ 0)
(5) (u[1] ≥ 0∧x[1] + (-1)w[1] ≥ 0 ⇒ 1 + u[1] ≥ 0∧(UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥)∧-1 + (-1)Bound + (-1)w[1] + x[1] ≥ 0)
(6) (u[1] ≥ 0∧x[1] + (-1)w[1] ≥ 0 ⇒ 0 = 0∧-1 + (-1)Bound + (-1)w[1] + x[1] ≥ 0∧1 + u[1] ≥ 0∧(UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥)∧0 = 0)
(7) (u[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 = 0∧-1 + (-1)Bound + x[1] ≥ 0∧1 + u[1] ≥ 0∧(UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥)∧0 = 0)
(8) (u[1] ≥ 0∧x[1] ≥ 0∧w[1] ≥ 0 ⇒ 0 = 0∧-1 + (-1)Bound + x[1] ≥ 0∧1 + u[1] ≥ 0∧(UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥)∧0 = 0)
(9) (u[1] ≥ 0∧x[1] ≥ 0∧w[1] ≥ 0 ⇒ 0 = 0∧-1 + (-1)Bound + x[1] ≥ 0∧1 + u[1] ≥ 0∧(UIncreasing(F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))), ≥)∧0 = 0)
(10) (F(x[1], z[1], u[1], w[1])≥NonInfC∧F(x[1], z[1], u[1], w[1])≥COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])∧(UIncreasing(COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])), ≥))
(11) ((UIncreasing(COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧(UIncreasing(COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])), ≥)∧0 ≥ 0)
(14) (0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(F(x1, x2, x3, x4)) = -1 + (-1)x4 + x1
POL(>=@z(x1, x2)) = -1
POL(COND_F(x1, x2, x3, x4, x5)) = -1 + (-1)x5 + x2
POL(0@z) = 0
POL(TRUE) = 0
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))
COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))
F(x[1], z[1], u[1], w[1]) → COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])
&&(FALSE, FALSE)1 ↔ FALSE1
TRUE1 → &&(TRUE, TRUE)1
+@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)