Termination of the given ITRSProblem could successfully be proven:



ITRS
  ↳ ITRStoIDPProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

Cond_f1(TRUE, x, z, u, w) → z
f(x, z, u, w) → Cond_f1(>@z(w, x), x, z, u, w)
f(x, z, u, w) → Cond_f(&&(>=@z(x, w), >=@z(u, 0@z)), x, z, u, w)
sqrt(x) → f(x, 0@z, 1@z, 1@z)
Cond_f(TRUE, x, z, u, w) → f(x, +@z(z, 1@z), +@z(u, 2@z), +@z(+@z(w, u), 2@z))

The set Q consists of the following terms:

Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)


Added dependency pairs

↳ ITRS
  ↳ ITRStoIDPProof
IDP
      ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_f1(TRUE, x, z, u, w) → z
f(x, z, u, w) → Cond_f1(>@z(w, x), x, z, u, w)
f(x, z, u, w) → Cond_f(&&(>=@z(x, w), >=@z(u, 0@z)), x, z, u, w)
sqrt(x) → f(x, 0@z, 1@z, 1@z)
Cond_f(TRUE, x, z, u, w) → f(x, +@z(z, 1@z), +@z(u, 2@z), +@z(+@z(w, u), 2@z))

The integer pair graph contains the following rules and edges:

(0): F(x[0], z[0], u[0], w[0]) → COND_F1(>@z(w[0], x[0]), x[0], z[0], u[0], w[0])
(1): F(x[1], z[1], u[1], w[1]) → COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])
(2): COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))
(3): SQRT(x[3]) → F(x[3], 0@z, 1@z, 1@z)

(1) -> (2), if ((u[1]* u[2])∧(w[1]* w[2])∧(x[1]* x[2])∧(z[1]* z[2])∧(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)) →* TRUE))


(2) -> (0), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[0])∧(+@z(z[2], 1@z) →* z[0])∧(+@z(u[2], 2@z) →* u[0])∧(x[2]* x[0]))


(2) -> (1), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[1])∧(+@z(z[2], 1@z) →* z[1])∧(+@z(u[2], 2@z) →* u[1])∧(x[2]* x[1]))


(3) -> (0), if ((x[3]* x[0]))


(3) -> (1), if ((x[3]* x[1]))



The set Q consists of the following terms:

Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
IDP
          ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): F(x[0], z[0], u[0], w[0]) → COND_F1(>@z(w[0], x[0]), x[0], z[0], u[0], w[0])
(1): F(x[1], z[1], u[1], w[1]) → COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])
(2): COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))
(3): SQRT(x[3]) → F(x[3], 0@z, 1@z, 1@z)

(1) -> (2), if ((u[1]* u[2])∧(w[1]* w[2])∧(x[1]* x[2])∧(z[1]* z[2])∧(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)) →* TRUE))


(2) -> (0), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[0])∧(+@z(z[2], 1@z) →* z[0])∧(+@z(u[2], 2@z) →* u[0])∧(x[2]* x[0]))


(2) -> (1), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[1])∧(+@z(z[2], 1@z) →* z[1])∧(+@z(u[2], 2@z) →* u[1])∧(x[2]* x[1]))


(3) -> (0), if ((x[3]* x[0]))


(3) -> (1), if ((x[3]* x[1]))



The set Q consists of the following terms:

Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
IDP
              ↳ IDPNonInfProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(2): COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))
(1): F(x[1], z[1], u[1], w[1]) → COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])

(1) -> (2), if ((u[1]* u[2])∧(w[1]* w[2])∧(x[1]* x[2])∧(z[1]* z[2])∧(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)) →* TRUE))


(2) -> (1), if ((+@z(+@z(w[2], u[2]), 2@z) →* w[1])∧(+@z(z[2], 1@z) →* z[1])∧(+@z(u[2], 2@z) →* u[1])∧(x[2]* x[1]))



The set Q consists of the following terms:

Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z)) the following chains were created:




For Pair F(x[1], z[1], u[1], w[1]) → COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1]) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(F(x1, x2, x3, x4)) = -1 + (-1)x4 + x1   
POL(>=@z(x1, x2)) = -1   
POL(COND_F(x1, x2, x3, x4, x5)) = -1 + (-1)x5 + x2   
POL(0@z) = 0   
POL(TRUE) = 0   
POL(&&(x1, x2)) = -1   
POL(2@z) = 2   
POL(+@z(x1, x2)) = x1 + x2   
POL(FALSE) = -1   
POL(1@z) = 1   
POL(undefined) = -1   

The following pairs are in P>:

COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))

The following pairs are in Pbound:

COND_F(TRUE, x[2], z[2], u[2], w[2]) → F(x[2], +@z(z[2], 1@z), +@z(u[2], 2@z), +@z(+@z(w[2], u[2]), 2@z))

The following pairs are in P:

F(x[1], z[1], u[1], w[1]) → COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(FALSE, FALSE)1FALSE1
TRUE1&&(TRUE, TRUE)1
+@z1
&&(FALSE, TRUE)1FALSE1
FALSE1&&(TRUE, FALSE)1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ IDP
              ↳ IDPNonInfProof
IDP
                  ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(1): F(x[1], z[1], u[1], w[1]) → COND_F(&&(>=@z(x[1], w[1]), >=@z(u[1], 0@z)), x[1], z[1], u[1], w[1])


The set Q consists of the following terms:

Cond_f1(TRUE, x0, x1, x2, x3)
f(x0, x1, x2, x3)
sqrt(x0)
Cond_f(TRUE, x0, x1, x2, x3)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.